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ABSTRACT: Maximum entropy methods (MEMs) determine
posterior distributions by combining experimental data with prior
information. MEMs are frequently used to reconstruct conforma-
tional ensembles of molecular systems for experimental informa-
tion and initial molecular ensembles. We performed time-resolved
Förster resonance energy transfer (FRET) experiments to probe
the interdye distance distributions of the lipase-specific foldase Lif
in the apo state, which likely has highly flexible, disordered, and/or
ordered structural elements. Distance distributions estimated from
ensembles of molecular dynamics (MD) simulations serve as prior
information, and FRET experiments, analyzed within a Bayesian
framework to recover distance distributions, are used for
optimization. We tested priors obtained by MD with different
force fields (FFs) tailored to ordered (FF99SB, FF14SB, and FF19SB) and disordered proteins (IDPSFF and FF99SBdisp). We
obtained five substantially different posterior ensembles. As in our FRET experiments the noise is characterized by photon counting
statistics, for a validated dye model, MEM can quantify consistencies between experiment and prior or posterior ensembles.
However, posterior populations of conformations are uncorrelated to structural similarities for individual structures selected from
different prior ensembles. Therefore, we assessed MEM simulating varying priors in synthetic experiments with known target
ensembles. We found that (i) the prior and experimental information must be carefully balanced for optimal posterior ensembles to
minimize perturbations of populations by overfitting and (ii) only ensemble-integrated quantities like inter-residue distance
distributions or density maps can be reliably obtained but not ensembles of atomistic structures. This is because MEM optimizes
ensembles but not individual structures. This result for a highly flexible system suggests that structurally varying priors calculated
from varying prior ensembles, e.g., generated with different FFs, may serve as an ad hoc estimate for MEM reconstruction robustness.

1. INTRODUCTION
To understand protein function, proteins are best described by
energy landscapes, molecular ensembles, and kinetic path-
ways,1 which challenges structural biology.2 Classical exper-
imental techniques such as X-ray crystallography, cryo-EM, or
NMR can resolve fascinating snapshots of single atomistic
structures. Many proteins require flexibility to function.1,3 If
the number of conformers is small and they are long-lived, the
classical techniques can still resolve conformers at high
resolution by varying experimental conditions.4−7 However,
multidomain proteins with unstructured segments and intrinsi-
cally disordered proteins (IDPs) are particularly challenging
for structural biology due to a large number of possible
conformations.8−12 Structural ensembles were proposed for
molecular systems of varying sizes and complexities, starting
from small folded proteins that can be studied accurately by

NMR techniques, such as ubiquitin, for which structures and
an associated dynamic model, a so-called kinetic ensemble,
were reported.13,14 Multidomain proteins with flexible linkers,
such as U2AF65,15 calmodulin,16 or TIA-1,17 are more
challenging, as the size and associated number of degrees of
freedom are substantially larger. Proteins with disorder regions,
such as ESCRT complexes,18 are even more complex, and the
ultimate challenge in terms of the number of degrees of
freedom is the IDPs.19,20
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For large ensembles, no technique alone can resolve
molecular ensembles in atomistic detail, as most biophysical
experiments report on observables that are averages over
ensembles of conformations. To overcome the limitations of
individual techniques, integrative molecular modeling com-
bines experimental information such as NMR,15 small angle X-
ray scattering (SAXS),21 electron paramagnetic resonance
(EPR),22 Förster resonance energy transfer (FRET),23−27 and
cross-linking28 with computational information (e.g., from
molecular simulations using force fields (FFs)).25−27,29

Bayes theorem provides a formal framework to integrate
simulated ensemble and experimental data. Combined with the
maximum entropy principle, it is a suitable refinement
approach for flexible systems, where no assumption about
the number of states is made, as opposed to maximum-
parsimony methods, where the minimum number of structures
that describe experimental data is selected.8,30 Bayes theorem
expresses information in the form of probabilities, p. The
theorem combines information on a model, M, experimental
data, D, and prior information, I (eq 1)31

| = | |
|

p M D I
p D M I p M I

p D I
( , )

( , ) ( )
( ) (1)

where p(M|D, I) is the posterior model density, e.g., the
probability density of a conformational ensemble conditioned
on D and I, p(D|M, I) is the data likelihood, p(M|I) is the prior
model density, and p(D|I) = Z is the model evidence or
marginal likelihood (in analogy to statistical mechanics, p(D|I)
is sometimes called partition function, Z). Conformational
ensembles M can be determined by restrained simula-
tions,32−36 where D is incorporated into the structural
modeling framework.27,37 Alternatively, p(M|I) is sampled
independently of p(D|M, I), and p(M|D, I) is computed using
the independently sampled prior and likelihood. The latter
approach is easy to implement, as the sampling is independent
of evaluating the likelihood function. However, few sampled
models might satisfy D and I either due to insufficient sampling
or inaccuracies of I used for sampling (FF parameters).
Maximum entropy methods (MEMs) are statistical

approaches based on Bayes’ theorem that combine I, D, and
M.38 MEMs determine the maximum a posteriori (MAP)
distribution, Q, for p(D|M, I) and an entropy prior, p(M|I).
When MEMs are applied to recover ensembles of states for D,
a set of predetermined states with corresponding population
fractions is the prior information I, and the population of the
states are parameters of M.39−41 States are most commonly
defined by structural similarities, and MEMs are used to
optimize populations of conformers. When optimizing M, the
strict convexity of the entropy prior asserts that even for
underdetermined systems unique regular solutions are found.42

However, p(M|D, I) depends on I, the state distribution of the
initially simulated ensemble, and D, the experimental data.
Hence, both I and D impact the ensembles recovered by
MEMs.
Here, we probe the robustness of MEM, i.e., the precision

and accuracy, for recovering the structural diversity of the
ensemble and resolving individual structures in the ensemble
with respect to I, considering experimental data and its
corresponding precision. For that, we determine posterior
ensembles for the folding domain (FOD) of Pseudomonas
aeruginosa lipase-specific foldase (Lif)43,44 (Figure 1). Lif is a
steric chaperone with a three-domain organization common

with other steric chaperones.43,45,46 Its folding domain is
anchored to the inner bacterial membrane by a conserved
transmembrane domain and an alanine/proline-rich flexible
linker.47 Lif activates the prefolded lipase LipA with a
mechanism independent of ATP48 by binding with the folding
domain (FOD),47 which can be divided into three
subdomains: minidomains 1 and 2 (MD1, MD2), connected
by the extended helical domain (EHD).43,49 As such, Lif
follows the typical architecture of multidomain proteins, where
different domains of a protein are connected by linkers with
different amounts of softness. The α-helical arrangement of the

Figure 1. Maximum entropy-based ensemble refinement of lipase-
specific foldase (Lif). Top left: the quaternary structure of the P.
aeruginosa Lif:LipA complex homology model is shown, with the
foldase Lif minidomains MD1 (residues 65−146, cyan), the extended
helical domain EHD (residues 147−265, blue), and MD2 (residues
266−340, light blue). Lif forms a unique headphone-like fold around
the lipase LipA (yellow). Top right: simplified Lif model. Three
domains are assumed to act as three rigid bodies connected by two
hinges (between EHD and MDs, allowing three degrees of freedom
each for the MDs), yielding a model with six internal degrees of
freedom. The all-atom structural information is fed into molecular
dynamics simulations with five different FFs. The obtained conforma-
tional ensembles serve as a basis to calculate the interdye distance
distribution in MD, i.e., the prior information I (magenta frames).
FRET data acquired for the distance network provides information on
interdye distance distributions D (green frames). The prior
information I is combined with the FRET data D using the maximum
entropy method (MEM, black frame). MEM determines the
maximum a posteriori (MAP) distribution for the species fractions
to produce posterior structure weights Q that represent molecular
ensembles (blue frames).
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EHD suggests it to be a “rigid linker” that keeps MD1 and
MD2 as a molecular spacer at a certain distance.
We, therefore, geometrically approximated Lif as a 3-body

object for which a small set of distance measurements should
potentially resolve the domain arrangement (Figure 1) while
preserving biological activity (Table S1). We used time-
resolved FRET experiments and molecular dynamics (MD)
simulations to acquire structural data on Lif. FRET is the
distance-dependent energy migration from an excited donor
fluorophore to an acceptor fluorophore;50 time-resolved FRET
experiments inform on conformational distributions with
minimal conformational averaging, as snapshots of the
conformers are obtained on the nanosecond time scale. Our
MEM scoring uses the known single photon counting statistics
(Poisson). Making use of defined data and data noise, our
FRET-based MEM has a well-defined minimum that is
convenient and robust for validating the consistency of the
FF-dependent prior and posterior ensembles to experiments.
For integrative FRET modeling by MEM, we established the

following workflow: we developed a Bayesian tool (ucFRET)
that transforms time-resolved FRET data into interdye
distance distributions as opposed to simple ensemble averages.
For resolving conformational ensembles, we acquired data on a
set of FRET experiments with a network of FRET pairs. These
experiments served as experimental data, D. As input
information, we used distinct conformational ensembles
obtained from MD simulations with different force fields
optimized for folded and unfolded proteins. To compute
experimental observables as prior I for combining experimental
data and computational models, we employed a forward model
based on accessible volume (AV) simulations.25,37 We
optimized our prior ensembles against the FRET data and
found that our priors describe the FRET data to a different
extent. By varying the contribution of experimental and prior
information, we searched for optimally balanced solutions (L-
curve analysis).
Next, we assessed the performance of our MEM approach.

We tested the effect of prioritizing experiments over the prior
information to evaluate how uniquely conformations are
resolved within a large ensemble at atomistic resolution and
whether ensembles from distinct force fields yield similar
conformers. This objective is a great challenge in general and
especially for FRET because FRET mainly informs on long-
range features.37 To optimize our analysis and assess the
robustness of MEM ensemble reconstructions, we performed
synthetic experiments on defined conformational ensembles
(target ensemble Y). We found the optimal balance for prior
and experimental information that minimized the discrepancy
to the target ensemble to be close to the corner of the L-curve.
Using ensemble representations of varying details (atomistic
representations, inter-residue distograms, and three-dimen-
sional (3D) densities), we assessed the reliability of MEM-
derived ensembles and consequences for the achieved
resolution of posterior models. We found that distograms
and 3D density maps are robustly recovered representations
that are more appropriate to capture and identify relevant
features of large and diverse posterior ensembles than
individual structures. Finally, for our experimental FRET
data, we find that three out of five posterior ensembles have a
headphone shape as identified by the density map
representation. According to the L-curve criterion, ensembles
with a headphone or expanded shape are both feasible for
apoLif in solution.

Our results stress the need for robust uncertainty estimates
of posterior ensembles. In the absence of uncertainty estimates,
the distinct obtained posterior ensembles highlight the
importance of using structurally varying priors to probe the
robustness of MEM reconstructions.

2. MATERIALS AND METHODS
2.1. Maximum Entropy Method. MEMs used for

integrative modeling are based on MaxEnt51 methods
developed for image restoration.52 MEMs maximize the
posterior model density according to eq 2

| = | |p M D I p D M I p M Iarg max ( , ) arg max ( , ) ( )
M M (2)

where | =p M D I Qarg max ( , )
M

is the MAP distribution, i.e.,

the posterior model density that is maximal for M, D, and I. A
set of J states defines I. In structural integrative modeling
problems, a state corresponds to a conformation Cj with a prior
weight wj

(0). Hence, I = {wj
(0), Cj}j=1j=J . The set of weights defines

the model, M = {wj}j=1j=J . Weights belong to the J − 1 simplex,
i.e., ∑j wj = 1 and wj ≥ 0 for j ∈ {1, ···, J}. In MEM, p(M|I) is
an entropy prior (eq 3)

| = · =
=

p M I w w w S( ) exp( ln( / )) exp( )
j

J

j j j
1

(0)

(3)

where S = −∑j=1
J wj ln(wj/wj

(0)) and θ is a temperature-like
factor that controls the weight of the prior. p(D|M, I) =
exp(−H) is the data likelihood, where H depicts the agreement
of the model with D. Computing the data likelihood requires a
forward model and a noise model. The forward model predicts
D for M, assuming no experimental noise. The noise model
quantifies the distribution of the differences between D and the
forward model,53 which originates from random experimental
error, systematic experimental error, and error in the forward
model; noise models generally assume that systematic and
forward model errors are 0.
The forward model, the data, the noise, and the prior

information affect the outcome of the modeling. In FRET
experiments, the forward model requires a model of the dyes.
Such dye models can compute for a given conformation the
distribution of FRET rate constants. Dye models are essential
parts of FRET forward models and need to be critically
evaluated on a case-by-case basis. A full atomistic treatment
requires separate simulations for each FRET pair as an
exhaustive sampling of the dye’s conformational space is
challenging. We use a coarse-grained implicit dye model that
was shown to be accurate. We further assume slow
translational diffusion and fast rotational diffusion on the
time scale of fluorescence (<4 ns). The dye model output
(FRET rate constants) can be converted into time-resolved
fluorescence intensities. This conversion is computationally
expensive, as it requires the convolution with the instrument
response function (IRF) among other experimental nuisances
(e.g., background, IRF corrections, incomplete FRET label-
ing). Due to these nuisances, direct scoring against
fluorescence decays is computationally costly. Thus, instead
of approaching the modeling problem as a single-sided
problem, where fluorescence decays are computed for MD
simulations, we approach the modeling from two sides. First,
we transform by Bayesian modeling time-resolved fluorescence
intensities (and the associated data noise) into posterior model
densities. We marginalize nuisance to obtain probability
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densities over distance distributions. Next, for scoring of
ensembles, we compute, using implicit dye models as a forward
model, ensemble distance distributions. In our workflow, both
the output of the Bayesian fluorescence modeling and the
output of the structural forward model are distributions that
abstract molecular models and experimental data, respectively.
This intermediate representation allows for the computation-
ally efficient scoring of ensembles.
In MEM, the posterior model density is defined by eq 4

| = + =p M D I Z H S Z G( , ) exp( ) exp( )1 1 (4)

where G = H − θS is a free-energy-like function. For normal
distributed data, H(D, M, I) = 1/2·χ2, where χ2 is the sum of
squared deviations between the forward model and the data
weighted by the inverse of the noise. The maximum of p(M|D,
I) is obtained by solving a constrained optimization problem
that maximizes ln(p(M|D, I)). The MAP distribution is
uniquely defined and can be determined without an expensive
computation of Z−1 by minimizing G = H − θS using
computationally inexpensive gradient descent methods.
Here, {Cj} and {wj

(0)} are sets of representative con-
formations and corresponding cluster weights from clustered
MD trajectories. The initial weight wj

(0) of the cluster j
corresponds to the fraction of that cluster within the ensemble
of MD trajectories for a respective FF. The MD analysis is
described in detail in a separate section.

D is a set of K FRET experiments, D = {Dk}k=1k=K. Each Dk
measures a donor−acceptor (DA) distance, RDA, distribution,
xe(RDA)k, with the corresponding uncertainty, Δxe(RDA)k. In a
forward model, for Dk, a weighted average model RDA
distribution, xm(RDA)k, is computed in two steps: first, for
each Dk and entropy value, xm(RDA)jk is computed from the
accessible volume (AV) center-to-center distance,54−56 RMP,
and a noncentral χ-distribution (eq 5)

=

+

x R
R
R

( ) ( 2 ) e

e

jk

R R

R R

m DA DA
1 DA

MP

2

2

jk

jk

DA MP,

DA

2

DA MP,

DA

2

i

k

jjjjjjjj
y

{

zzzzzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

(5)

where σDA represents the overall broadness of xm(RDA)jk. We
used σDA = 8.5 Å, as this value is consistent in reference
experiments54 and MD simulations.57 Second, xm(RDA)k is
computed over all Cj using wj as the weighting factor (eq 6)

=
=

x R wx R( ) ( )k
j

J

j jkm DA
1

m DA
(6)

To compute χ2, we discretize xm and xe into Nb bins of 1.9 Å,
considering that FRET experiments are most sensitive around
the Förster radius R0. For our experiments, the reliable range is
0.65R0−1.5R058 For the FRET pair used here (AlexaFluor488,
AlexaFluor647), R0 = 52 Å; thus, the reliable range is 30−80 Å.
Accordingly, distances <30 and >80 Å are represented by a
single bin each. To allow for nonuniform binning, bin counts
are normalized by respective bin widths. We quantify the
discrepancy between M and Dk by eq 7

= =
=N N

x R x R

x R
1 1 ( ) ( )

( )k k
i

N i
k

i
k

ir,
2

b

2

b 1

e DA
( )

m DA
( )

e DA
( )

2
b

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (7)

where Nb is the total number of bins and xe(RDA(i) )k, xm(RDA(i) )k,
and Δxe(RDA(i) ) are the experimental species fraction, the model
species fraction, and the experimental uncertainty for the RDA(i)
bin, respectively. The overall discrepancy for all Dk ∈ D is χ2 =
∑kχk

2. To obtain a metric less dependent on |D| = K, we
normalize χr,k

2 by the number of measurements (eq 8)

=
=K

1

k

K

kr,total
2

1
r,
2

(8)

MEMs minimize G = 1/2χr,total2 −θS by varying {wj}.
59 We

minimized G by our in-house open-source software MaxEnt-
pRda (https://github.com/Fluorescence-Tools/MaxEnt-
pRda). MaxEnt-pRda makes use of the Jacobian and relies
on optimization algorithms provided by the scipy.optimize
module. In line with others,60 the L-BFGS-B algorithm gave
the best combination of convergence speed and reliability. For
the system investigated here, MaxEnt-pRda with L-BFGS-B
converges in about a hundred iterations independent of the
initial weights, i.e., in seconds on a current laptop.
Note that S is the negative Kullback−Leibler divergence

between wj
(0) and the varied weight wj. When wj = wj

(0), S = 0.
The more negative S, the less similar a posterior ensemble is to
the original ensemble. The temperature-like factor θ is a
separately defined hyperparameter that controls how strongly
deviations between {wj} and {wj

(0)} are penalized. Large θ leads
to small deviations of {wj} from {wj

(0)}.59 Small θ can cause
large changes in the {wj} and best agreement with D but can
lead to overfitting.61 We scan θ to obtain a broad range of
χr,total2 −S pairs.
2.2. FRET Network. To acquire information on intra-

molecular distances by FRET experiments, we generated
double cysteine variants and labeled the cysteines by
AlexaFluor488-C5-maleimide and AlexaFluor647-C2-malei-
mide (Thermo Fisher Scientific) as donor and acceptor
fluorophores, respectively. The set of double cysteine variants,
referred to by pairs of substituted amino acid numbers, defines
a network: 137−215, 137−268, 137−296, 215−268, 215−296,
255−296, 258−296, 259−296, 260−296, and 268−296. We
performed ensemble time-correlated single photon counting
(eTCSPC) experiments. Moreover, we performed FRET-FCS
analysis62 on data acquired on a multiparameter fluorescence
detection (MFD) setup.63,64 FCS determines a set of auto- and
cross-correlation functions based on spectral channels sensitive
to donor and acceptor fluorescence. The analysis of the
correlation curves of FRET-labeled samples recovers relaxation
times that inform us of the molecular dynamics.62 Details on
the eTCSPC and FCS analysis are provided in Supplemental
Materials and Methods. The fit results are compiled in Tables
S2 and S3.
2.3. Nonparametric Bayesian Analysis of eTCSPC

Data (ucFRET). To maximize the precision and accuracy of
recovered distance information, which serves as an input for
MEM ensemble refinement and account for data noise
(photon noise) ambiguities, we processed the raw eTCSPC
data, D, in a Bayesian framework using the ucFRET software in
four steps (i−iv). We processed the data for the FRET pairs
individually and repeated the steps i−iv for all distance
measurements.
In step (i), we gather all data Dl that informs us of distances

between labeling sites. Here, Dl is the fluorescence decay of the
FRET pair in the absence, f D|D

(D0), and presence of FRET, f D|D
(DA).
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In step (ii), we define a representation suitable for Dk. The
key determinant of the representation is the DA distance
distribution, x(RDA)k. We use mixture models, e.g., of Gaussian
distributions, to parameterize x(RDA)k. As a forward model to
compute model fluorescence decays, we use a model for small
organic fluorophores homogeneously quenched by FRET.58

Briefly, the model factorizes f D|D
(DA) into the FRET-induced

decay, ϵD,k(t) = ∫ x(RDA)k·e−kRET(RDA)t dx, and f D|D
(D0). We use two

representation types for x(RDA)k: (a) mixtures of Gaussians of
variable location, height, and width and (b) mixtures of
multiple noncentral χ-distributions, χm (eq 5), of variable
l o c a t i o n , R M P , m , a n d w i d t h , σ D A ;

= |=x R R R( ) ( , )k l
L

lDA 1 m DA MP, DA . In representation (a),
the number of Gaussians, nG, is a hyperparameter determined
by comparing scores of competing models. Typically, nG is in
the range of 1−3. In representation (b), we set the number of χ
distributions, L, by the bounds of RMP,m and σDA. We sample
σDA and RMP,m in the range of [3.0 Å, 9.0 Å] and [10 Å, 130 Å],
respectively. Thus, we use L = (130−10)/3 = 40 as the
number of χ-distributions. Representation (b) minimizes
presumptions on the number of states and is better suited
for systems with an undefined or large number of states. For
scoring of ensembles, we used posteriors of the χ-distribution
mixture models. Dyes that are normally distributed have a χ-
distributed interdye distribution.
In step (iii), we optimize and sample over variable

parameters and nuisance parameters of the representation to
find models consistent with Dl using a scoring function that
ranks models. The exact scoring function (negative log-
likelihood function) considers that fluorescence decays are
counting histograms with the Poisson noise as described
previously.65 We optimize representation parameters by
minimizing the discrepancy between a computed model, Mk,
and Dk. By minimizing the discrepancy, we obtain an Mk that
best describes Dk. Moreover, we sample over variable
parameters to obtain parameter probability distributions and
parameter uncertainties.27,58

In step (iv), we analyze and interpret the optimization and
sampling results. For representation (a), we obtain nG posterior
distributions of population fractions, distribution widths, and
interdye distances. The population fractions inform us of the
relative abundance of molecules in a state, the distribution
widths of conformational heterogeneity, and the interdye
distances of structural features. For representation (b), we
obtain a posterior distribution over a set of separation
distances, {RMP,lk}l=1l=L, and a width σDA that relate to
p(x(RDA)|Dk), the probability of x(RDA) conditioned on Dk.
For MEM scoring, we convert p(x(RDA)|Dk) to p(x, RDA|
Dk,Mk) (eq 9)

| = |p x R D M R R p x R D

R p x R

( , , ) ( ) ( ( ) )

d d ( ( ))

k k kDA DA DA m DA

DA m DA (9)

and use the p(x, RDA|Dk, Mk) mean and standard deviation as
xe(RDA) and Δxe(RDA) estimate, respectively, for MEM
ensemble reweighting (eq 7). Assuming a fixed experimentally
determined Förster radius, we sample from the posterior of the
parameters using ensemble slice samplers.66 The software
implementation of the analysis framework is publicly accessible
(https://hub.docker.com/r/tpeulen/ucfret).
2.4. Molecular Dynamics Simulations. All-atom MD

simulations were performed for Lif using five FFs, namely,

FF99SB,67 FF14SB,68 FF19SB,69 FF14IDPS70 (here referred
to as IDPSFF), and FF99SBdisp.71 The simulations using
FF99SB were performed with the Amber11 software suite72

with the TIP3P water model,73 and simulations using FF14SB
or FF19SB were performed with Amber20.172 and the OPC
water model.74 Simulations using IDPSFF were performed
with Amber20.1 and the recommended TIP3P water model,70

and simulations using FF99SBdisp were performed with
Amber19.472 and a modified version of the TIP4P-D water
model, which is native to FF99SBdisp75 (Table S4). Besides
the diverse protein FFs and water models, we used different
procedures for the minimization and thermalization of the
systems to support generating independent structural ensem-
bles. Details on the minimization and thermalization
procedures are provided in the Supplemental Material and
Methods. The SHAKE algorithm76,77 was used in the
production runs to constrain the bond lengths of hydrogen
atoms, and the particle mesh Ewald method78 was used to treat
long-range electrostatic interactions with a direct-space,
nonbonded cutoff of 8 Å. The integration step for the MD
simulations was 2 fs. Production runs of 10 independent
replicas with a length of 1 μs each were performed for all FFs.
Conformations were saved at 20 ps intervals (settings collected
in Table S5).
Clustering of conformations and geometrical analyses were

performed with pytraj and CPPTRAJ79 of Amber20.1.72 To
reduce the number of conformers obtained from the five sets of
MD simulations, we employed hierarchical clustering using the
best-fit coordinate RMSD of all atoms. We employed a
maximum distance of 4 Å between the clusters as cluster
criterion (average linkage) for each set of simulations. The sets
of trajectories were sieved prior to clustering, i.e., the clustering
was performed on every 25th frame of the trajectory set, which
is equal to a time step of 0.5 ns, and the remaining frames were
added to the respective clusters after the clustering. For all
consecutive calculations, such as the determination of interdye
distances and MEM reweighting, the pooled cluster
representatives (which are the conformations closest to the
cluster average) were used as {Cj}. With these settings, we
obtained a total of 15,521 clusters of Lif structures. Initial
cluster weights wj

(0) were calculated as the size of cluster j
divided by the number of structures within the set of
simulations. To estimate the conformational space explored
by Lif, we performed a principal component analysis
(PCA)80,81 of the Cα atoms for all 15,521 cluster
representatives. MEM cluster weight optimization was
performed for each FF individually.
Dye positions and, therefore, donor and acceptor dye

distances were estimated using the free and open-source
software Olga37 (available at https://github.com/
Fluorescence-Tools/Olga).
2.5. Computation of Synthetic FRET Data. To assess

the accuracy of MEM, we computed synthetic FRET data for a
set of FRET pairs. In the computations, the fluorophores in a
FRET pair were attached to Lif by flexible linkers with a length
of 20 Å and had a Förster radius, R0, of 52 Å. To pick the
donor and acceptor attachment sites, we use a method based
on an automated pair selection planning approach that selects
an optimal set of FRET pairs by maximizing the information
from FRET experiments as implemented in the Olga37

software. An optimal set of FRET pairs maximizes the
precision of a structural model for a given ensemble that
satisfies the corresponding distance restraints. When selecting
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FRET pairs, only noncharged and polar amino acids spaced, on
average, five residues apart were considered attachment sites to
make a choice more experimentally plausible.
The automated FRET pair selection was run on the MD

ensembles computed for individual FFs. For each of the five
MD simulations for each, we obtained 30 FRET pairs. Among
the 5 ×30 pairs, there are 120 unique FRET pairs that were
used in a second step to select 50 FRET pairs that are the most
informative for all FFs combined (see Supplemental Materials
and Methods).
We computed fluorescence decays for an ensemble Y as

previously described.58 Briefly, for each conformer and FRET
pair in a target ensemble, Y, we simulated the positional
distribution of the donor and acceptor dyes around their
attachment sites using the AV approach.54 For the correspond-
ing interdye distance distributions, we computed FRET rate
constants assuming that the dyes diffuse slowly on the time
scale of fluorescence. Using the homogeneous approximation
that assumes uncorrelated quenching of the donor by other
processes and quenching by FRET, we computed fluorescence
decays of the donor in the presence of FRET.58 The
fluorescence decay of Y is the weighted average of fluorescence
decays of all structures. Experimental data is perturbed by
nuisances. Thus, we convolved fluorescence decays of Y with
an experimental instrument response function, added nui-
sances such as scattered light and fluorescence of incompletely
labeled molecules to the fluorescence decays, and simulated
shot-noise by random draws from Poissonian distributions.82

2.6. Ensemble Comparison. Various representations and
metrics were proposed to evaluate the similarity between
conformational ensembles and determine the quality of
resolved ensembles.83−86 To assess the consistency between
posterior ensembles of different FFs after FRET-MEM
refinement, we used the Jensen−Shannon divergence DJS

87

of residue pairwise Cα-distance histograms (distograms) and
3D density maps computed for the ensembles; the 3D density
maps provide a low-resolution model representation. 3D
density maps were computed by mapping coordinates of all
atoms of ensemble members onto a grid of uniform
dimensions (nx, ny, nz) = (100, 100, 100) and isotropic
voxel size of 2 Å. Voxel occupancy of a grid corresponds to a

sum of ensemble member weights found in respective voxels.
Computed 3D density maps were stored in the MRC2014 file
format,88 a standard for cryo-EM data, using the mrcf ile python
library.89 For the precision estimate of density maps, we
computed the gold-standard Fourier shell correlation (FSC)
curves90 between two independent reconstructions that are
free of spurious correlations.91,92 For that, structures of a given
ensemble were split into two sets of the same size. Here, we
used interleaved frames, i.e., odd and even frame numbers. For
each set of frames and corresponding weights, we computed
3D density half-maps. Subsequently, FSC curves between
Fourier transforms of half-maps were computed using the
EMDA python module.93 Finally, the precision of a full 3D
density map was assigned to a point where the FSC curve
crosses the threshold of 0.143.91 All density maps were
displayed using the 3D rendering program UCSF Chimera,94

where the cross-correlation coefficient (CCC) between a pair
of density maps was computed as a similarity measure between
ensembles.

3. RESULTS
3.1. Prior Structural Knowledge. The P. aeruginosa Lif

structure is unknown. However, Lif from P. aeruginosa and the
Burkholderia glumae lipase-specific foldase (BgLif) have a 39%
sequence identity and 52% sequence similarity. The BgLif
FOD embraces its cognate lipase LipA (BgLipA) to form a
complex with a headphone-like structure. A homology model
of P. aeruginosa Lif/LipA based on the BgLif/BgLipA shows the
same tertiary structure, with the FOD consisting of 11 α-
helices connected by loops (Figure 1).43 CD spectroscopy
indicates that BgLif and BgLipA undergo structural changes
upon interaction.46 Knowing that MD1 of the FOD is
structurally stable43 and assuming that MD2 and EHD are
predominantly stable with the linkers in between acting as
hinges in the absence of LipA, Lif can be geometrically
approximated by a 3-body object with two hinge regions,
having six internal degrees of freedom (Figure 1). Thus, a
combination of fluorescence spectroscopy techniques and MD
simulations seems well suited to characterize the conforma-
tional space of Lif.

Figure 2. Fluorescence spectroscopy of Lif variant 215−296. (A) Fluorescence correlation spectroscopy (FCS). Global formal fit of the auto- (left)
and cross- (right) correlation curves of donor and acceptor channels (SI eqns S1−S5). The inset in the right plot shows the donor−acceptor
anticorrelation curve (SI eqn S3), indicating the presence of fast and slow Lif dynamics on the time scale reaching hundreds of microseconds. The
results are compiled in Table S2. (B) Exemplary fluorescence decays measured by eTCSPC for the FRET sample (DA) and the donor-only
reference sample (DO). The DO sample (green) is fitted with a multi-exponential fit with three fluorescence lifetimes τi and species fractions given
in parentheses: 4.19 ns (0.781), 2.20 ns (0.131), 0.36 ns (0.088). The best donor−acceptor distance distribution found in Bayesian sampling for
the DA sample is displayed as a fit to the orange line. The weighted residuals for the models are plotted on top. (C) Bayesian analysis of
fluorescence decays. Probability of interdye distance distribution, p(x(RDA)|Dk), conditioned on fluorescence decays of the donor in the presence
and absence of the acceptor molecules. Gray lines indicate mean and 3-sigma limits of experimental model density, which are used as xe(RDA)k and
Δxe(RDA)k estimates for MEM ensemble reweighting. All RDA values below 30 Å and all above 80 Å are considered one additional data point each
in reweighting. See Figure S4 for all other investigated Lif variants.
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3.2. Fluorescence Information. To probe the structure
and dynamics of Lif, we generated a set of six double cysteine
variants that define a FRET network (Figure 1). Cysteine
mutations and fluorescent dyes might affect the conformations
adopted by Lif. However, activity and binding assays indicate
that the mutations and the fluorophores only weakly affect the
ability of Lif to bind and activate LipA (Figure S1 and Table
S1). We performed FRET-FCS and eTCSPC experiments on
the six FRET-labeled double cysteine Lif variants. The FRET-
FCS experiment provides information on time scales of

exchange between conformational states; the eTCSPC experi-
ment on a FRET sample yields information on a donor−
acceptor distance distribution, xe(RDA)k. Our FCS data
indicates that unbound Lif exhibits complex structural
dynamics, covering time scales from nanoseconds to hundreds
of microseconds (Figure 2A). Lif variants show various
amplitudes of FRET anticorrelation, which depend on the
contrast of FRET efficiencies during dynamics62 (all curves are
shown in Figure S2).

Figure 3. Distogram and principal component analysis of prior conformational ensembles. (A) Inter-residue distograms of prior Lif ensembles I
obtained by MD simulations using five FFs. This representation displays the diversity of an ensemble by integrating over ensemble members while
retaining the residue (sequence) information. We compute the pairwise mean, R̅, and the standard deviation, σR. (B−F) Projection of Cα atom
positions of cluster representatives for a given FF onto the first two principal components (PC1 and PC2) obtained from a PCA. The PCA was
performed on the pooled cluster representatives of all FFs. The marker size for each representative structure scales linearly with the cluster weight.
(G) Variance explained by the first 15 PCs (bars) and the cumulative explained variance (squares). (H) Representative Lif structures for different
PC1/PC2 values (given in parentheses below each structure) taken from MD simulations with FF99SBdisp (orange crosses in panel F). PC1
describes the opening/closing of MD1 and MD2; PC2 describes the rotation of MD2. Lif domains are colored as in Figure 1.
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We performed eTCSPC experiments on FRET-labeled
double cysteine Lif variants to obtain information on
experimental interdye distance distributions xe(RDA)k. First,
we applied the Gaussian model (eq S8) to get an insight into
the inter-dye distance distribution. As an example, the
fluorescence decays of Lif variant 215−296 (donor-only and
donor-acceptor sample) display broad x(RDA): ⟨RDA⟩ = 46 Å,
σDA = 16 Å. Similar features were observed for the other
labeled variants (decays in Figure S3 together with fit results in
Table S3). The broad x(RDA) of apoLif is a direct indication of
conformational heterogeneity.23,95,96 Since there is no
indication that unbound Lif adopts discrete states, we used a
Bayesian approach (ucFRET) that applies χ distributions with
variable location and width (eq 5) in a mixture model to
represent x(RDA), and use x(RDA) posterior model densities
(eq 9) (Figures 2B and S4) as information for later steps
(Figure S5).
Our Bayesian analysis converts fluorescence decays into

interdye distance distributions. We estimate the conversion
precision by the posterior distribution (Figure 2C). For
scoring, we use marginal distributions that do not consider
correlations and underestimate the sampling precision. In
addition to the precision (data noise), the model and
calibration accuracy contribute to the overall uncertainty.
The experiments (and simulations) were performed on dyes
flexibly tethered to their host. The fluorescence of such dyes
can be approximated by models where the translational dye
diffusion is slow compared to the time scale of fluorescence
(<4 ns).25,54 The distance distribution between dyes normally
distributed around their attachment site is χ-distributed.97
Thus, x(RDA) is represented by a χ distribution mixture model.
Time-resolved anisotropy experiments on such dyes showed
that the rotational dye diffusion is fast compared to the time
scale of fluorescence. Thus, FRET rate constants can be
converted to distances using a single Förster radius. Slower
rotating dyes require more complex conversion schemes.98

3.3. Prior Conformational Ensembles from MD
Simulations. Although the FOD of Lif bound to LipA is
likely structured,43 the unbound FOD might have partially
disordered regions. Thus, we performed MD simulations of the
unbound FOD with five FFs optimized for folded or
disordered proteins: we used standard Amber FFs optimized
for folded proteins, the classic FF99SB and the more recent
FF14SB as well as FF19SB, and, in addition, IDPSFF (a
modified FF14SB) and FF99SBdisp that supposedly better
capture features of intrinsically disordered/partially disordered
proteins. We used FF99SB67 together with the TIP3P water
model in a previous study.43 FF14SB is an updated FF99SB
with improved accuracy of protein side chain and backbone
parameters.68 FF19SB is a further improvement of FF14SB,
which tackles an underestimated helix stability in FF14SB.69

IDPSFF is based on FF14SB, with the backbone dihedral
terms of all 20 natural amino acids corrected for IDPs,
enhancing the unfolding of collapsed proteins.70 FF99SBdisp
was reported to be capable of describing folded proteins and
disordered proteins equally well. Together with its native water
model,71 FF99SBdisp applies modest changes to the backbone
torsion and the strength of a backbone O−H Lennard-Jones
pair potential to describe both ordered and disordered proteins
accurately. For each FF, we performed 10 replicas of MD
simulations of 1 μs length each. The replicas for each FF were
pooled, and the conformations were clustered. The down-
stream analysis was performed on cluster representatives and

cluster populations, i.e., cluster weights (see the Material and
Methods section: clustering and geometry analyses). For
FF99SB, FF14SB, FF19SB, IDPSFF, and FF99Sbdisp, we
obtained 910, 3640, 2852, 2561, and 5558 clusters,
respectively, for an all-atom RMSD cluster threshold of 4 Å.
Surprisingly, IDPSFF, although tailored for more flexible
proteins, samples more similar conformations than FF14SB
and FF19SB, as indicated by the similar number of clusters.
Here, we note that the cluster representatives, although
capturing the conformational information within a cluster, do
not necessarily conserve FRET properties in all cases due to
variances in the estimation of the dye position and, therefore,
interdye distances. The potential error introduced by perform-
ing the downstream analysis on cluster representatives,
however, is likely to be similar for all tested FFs, as clustering
was performed uniformly. To display the influence of FF on
the sequence-dependent structural features of the five prior Lif
ensembles, i.e., the ensembles obtained from unbiased
simulations, we generate pairwise Cα inter-residue distance
histograms (distograms) and show the first (mean, R̅) and
second moment (standard deviation, σR) (Figure 3A) revealing
that MD1 (cyan box) and MD2 (light blue box) are
structurally more stable in all FFs (small σR), while the EHD
domain (blue box) is structurally variable. This has
consequences for the heterogeneity of the conformational Lif
ensembles, that gradually increases from FF99SB, FF19SB,
FF14SB, FF99SBdisp to IDPSFF. To conclude, we obtained
five different prior ensembles that cover a wide conformational
space that can be tested by MEM.
Next, we further characterize the spatial domain config-

urations in the prior ensembles by principal component
analysis to prepare the ground for a subsequent comparison of
the prior I with the experimentally derived FRET data (Figure
S4) by calculating interdye distance distributions for the prior
ensembles (Figure S5).
We mapped the sampled conformational spaces for each FF

onto the two main principal components (PCs) obtained from
a PCA of the Cα atom positions of all cluster representatives
(Figure 3B−F). The first two and three principal components
(PCs) account for 38 and 49% of the variance, respectively
(Figure 3G). The first PC (PC1) captures an opening and
closing motion of Lif (Figure 3H). PC2 and PC3 capture a
rotation of MD2 and MD1, respectively. We use PC1 and PC2
to highlight differences among the FFs (see Figure S6 for a
projection of the first three PCs). Projection of the FF99SB-
derived cluster representatives onto PC1 and PC2 covers the
narrowest range of values and favors a compact conformation
(Figure 3B). Both FF14SB and FF19SB sample similar
conformational spaces (Figure 3A,C,D). IDPSFF samples
open conformations more frequently than the other FFs;
however, clusters with the highest weights are associated with
compact conformations (Figure 3A,E). FF99SBdisp, by
contrast, samples the PC1−PC2 space most uniformly of all
FFs (Figure 3A,F).
As the stability of secondary structure elements often

influences the overall rigidity and flexibility of the protein, we
compare the FF’s tendency to conserve structural elements
such as α-helices. In all simulations, MD1 and MD2 were
folded in more than 70% of the frames on average (Figure S7).
Lif flexibility was dominated by the flexibility of the EHD
composed of helices H4−H8. For these helices, varying
secondary structure propensities dependent on the used FF
were found. In MD simulations with FF14SB, FF19SB, and
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FF99Sdisp, H4−H8 are predominantly helical (>70%).
FF99SBdisp seemingly promotes protein flexibility (Figure
3F) while simultaneously preserving the protein’s secondary
structure (Figure S7). In IDPSFF and FF99SB, the Lif
secondary structure is less stable (33 and 59%, respectively;
Figure S7). For IDPSFF, which preserves the secondary
structure of the EHD the least, this leads to broad coverage of
the space spanned by the first two PCs (Figure 3E), yielding
more open and closed conformations and fewer intermediate
states. By contrast, for FF99SB, the partial collapse of the
secondary structure of H4−H8 seemingly promotes the
compaction of the protein, paralleled by the lowest number
of clusters and the least coverage of the space spanned by the
first two PCs (Figure 3B).
Next, we compared interdye distributions obtained from

experimental data xe(RDA)k with xm(RDA)k based on the
forward modeling of ensembles from different FFs (Figure S5).
Prior ensembles describe the experimental data poorly. Overall
discrepancies (χr,total2 ) are between 13.6 and 20.8 (Table S6).
Hence, the donor−acceptor distance distributions from the
simulations and experiments in general disagree. For single
distances, a better agreement (minimum discrepancy, χ2) is
found for FF99SB simulations and the residue pairs 258−296
(within MD2, χr,258−296

2 = 2.80) and 259−296 (within MD2,
χr,259−296
2 = 0.84). For other pairs, however, FF99SB

simulations underestimate the distances, indicating that Lif
collapsed in these simulations without consecutive unfolding
or opening events (Figure S8). For FF14SB and FF19SB
simulations, we find closed and open conformations. The
conformational ensemble from FF19SB simulations agrees
slightly better with experiments than FF14SB (Figures S9 and
S10). This is particularly prominent for distances 137−215
(within MD1), 137−296 (MD1-MD2), and 137−268 (MD1-
EHD). IDPSFF produced ensembles that disagree the least
with the experimental data. These ensembles describe the
distances 258−296 (χr,258−296

2 = 2.11) similarly well as FF99SB
and 137−296 slightly better (χr,137−296

2 = 36.81) (Figure S11).
FF99SBdisp simulations produced ensembles that agree the
least with experiments. Although the FF99SBdisp ensemble
describes the distances 137−215 (χr,137−215

2 = 2.06) and 137−
296 (χr,137−296

2 = 1.15) well, it disagrees with the remaining set
of distances (Figure S12). An overview of all χr2 for all distances
and FFs is provided in Table S7. Hence, although some
distances agree better with the experiments, there is no general
trend that distances within a minidomain or between them
stand out.
In conclusion, the chosen FFs produce structurally different

ensembles, covering different regions of the combined
conformational space, and show variance in secondary
structure conservation. When comparing the prior I to
experimental data D, we find poor agreement. Here, we note
that due to the flexibility of the protein, the sampling of
conformations is potentially poor for all tested FFs. Never-
theless, this approach pictures a valid real-life scenario in which
a potentially poorly described prior needs to be refined using
additional information.
3.4. MEM Cluster Reweighting with Experimental

FRET Data. To overcome the disagreements between MD
simulations and experimental data, we used the experimental
data in MEM refinement. Our FRET-FCS experiments
revealed the presence of fast and slow Lif dynamics on the
time scale reaching hundreds of microseconds (Figure 2A).
Since the latter cannot be sufficiently sampled, we combined

experimental distance information D, with simulated distance
information based on conformational ensembles from the MD
simulations, the prior information I, consisting of the structure
representatives of clusters and corresponding cluster weights of
the MD trajectories for the different FFs. We used MEM to
find conformational ensembles describing both the exper-
imental data and the MD simulations (Figure 1) by optimizing
cluster weights according to eqs 2−4 (Figure 4A). As above,
we quantify the discrepancy with D using χr,total2 (eq 8). χr,total2 ≈
1 is of particular interest as ensembles with χr,total2 > 1 disagree
with experimental data (under the assumptions of the used
forward model). To quantify differences of prior and posterior
weights of conformations, we use the entropy, S (eq 3). For S
≈ −3, posterior ensembles from priors of FFs best describing
D achieve χr,total2 ≈ 1 (Figure 4B). At S ≈ −3, the observed
χr,total2 values are virtually converged for all FFs when compared
to the χr,total2 values obtained at S < −3 (Figure 4B). Thus, we
use S ≈ −3 as a reference point for comparing posterior
ensembles for different I.
In Figure 4A, we exemplarily depict initial and MEM

reweighted distance distributions for the FRET pair 215−296
and FF14SB (for remaining FRET pairs and other FFs, see
Figure S5). Unbiased, the ensemble has a discrepancy (eq 7)
between the model and the data of χ(215−296)

2 (FF14SB) =
35.21. For S = −3, we find χ(215−296)

2 (FF14SB) = 0.90. The
dependency of χr,total2 on S is depicted in Figure 4B for all tested
FFs. For S = −3, χr,total2 (FF99SB) = 1.41, χr,total2 (FF14SB) =
1.16, χr,total2 (FF19SB) = 1.66, χr,total2 (IDPSFF) = 1.20, and χr,total2

(FF99SBdisp) = 1.97. To assess the significance of χr,total2

differences, the effective number of observations and the
model complexity need to be considered. In a conservative
significance estimate, we treat the 10 experimental distance
measurements as independent and assume that only the mean,
mode, skewness, and kurtosis of a distance distribution are the
observed features. Moreover, we assume that Lif has six
effective degrees of freedom. Thus, the total degree of freedom
is 10 ×4−6 = 34, and 0.06 is an upper estimate for the p-value
(F-value = 1.97/1.16 = 1.70) of the comparison of FF14SB and
FF99SBdisp MEM ensembles. Consequently, the FF14SB
MEM ensemble describes experiments better than the MEM
FF99SBdisp. The MEM reweighting of all ensembles for all
measured distances is shown in Figures S8−S12.
Overall, posterior ensembles from FF14SB and IDPSFF

agree best with experimental results, yielding the lowest χr,total2

for the given entropy threshold. This result is surprising as
IDPSFF was modified from FF14SB to handle intrinsically
disordered proteins by enhancing the protein flexibility, which
often preserves the secondary structure to a lower degree.70

Surprisingly, FF99SBdisp, designed for both ordered and
disordered proteins and which samples most uniformly the
PC1−PC2 space, disagreed the most with experiments before
and after MEM reweighting.
3.5. Posterior Analysis.MEM favored a few clusters. After

reweighting, the 50 clusters with the largest weights account
for more than 60% of the overall weights; the top 500 clusters
account for more than 95% of the overall weights (Figure 4C).
For FF14SB, before applying MEM, 677 and 2790 clusters
represent 60 and 95% of the conformational ensemble,
respectively.
We next compared reweighted ensembles among different

FFs and discussed the results for the FFs FF14SB, FF19SB,
and IDPSFF because before reweighting, FF14SB and FF19SB
are the most similar (Figure 3), and after reweighting, FF14SB
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and IDPSFF ensembles described the data best and second
best. The results for all remaining pairwise FF comparisons are
depicted in Figures S13−S21. We compare reweighted
ensembles based on two hypotheses.
First, we hypothesize that structures ranked similarly are

structurally similar. To test our hypothesis, we computed all
pairwise cluster representatives in terms of the Cα-RMSD and
displayed these similarities for the top 50 clusters in matrices
(Figure 5A,C). By definition of the cluster criterion (see
above), the average Cα-RMSD of structures within a cluster
differ at most by 4 Å from their representative. For FF14SB
and IDPSFF, the top 50 clusters with similar weights generally
have different structures (Figure 5A). The two most populated
clusters (with weights of 7.9 and 5.2% (FF14SB) as well as 4.7
and 4.3% (IDPSFF)) are remarkably dissimilar: we find Cα-
RMSD differences in the range of 18.1−29.3 Å (Figure 5B).
For FF14SB and FF19SB, which produced comparable prior
ensembles, the two most populated clusters (with weights of
7.9 and 5.2% (FF14SB) as well as 11.8 and 7.1% (FF19SB))
are remarkably dissimilar, too (Figure 5D): we find Cα-RMSD
differences in the range of 11.4−20.8 Å. This result is
surprising, as the conformational ensembles sampled by
FF14SB and FF19SB were more similar before reweighting
(Cα-RMSD differences in the range of 10.2−14.4 Å).
Moreover, a visual comparison of the structures reveals
different low-resolution properties such as the interdomain
contacts, shapes, or radius of gyration. To conclude, we find
structurally different posterior ensembles for FFs that produce
posterior ensembles well describing the data (FF14SB and
IDPSFF) and FFs that produce similar prior ensembles
(FF14SB and FF19SB).
Furthermore, we hypothesize that clusters of high structural

similarity between different posteriors have similar weights. To
test our hypothesis, we compare weights of structurally similar
clusters. We determined 50 cluster pairs iteratively: we selected
the most similar cluster representatives between two FFs based
on Cα-RMSD, discarding cluster representatives already
assigned to a structure pair. The data (Figure 5E,F) reveals
no correlation in the posterior weights for similar structures
selected from different prior I, and this finding is independent
of the magnitude of the structural similarity.
3.6. Assessment of MEM with Synthetic FRET Data.

To assess which model resolution is possible from MEM
reconstruction independent of the prior I, we computed
synthetic FRET data. We consider the ensemble on which
synthetic FRET data is computed the known target ensemble,
Y. We then use Y to assess the accuracy and precision of the
reconstructed posterior ensembles. We computed synthetic
FRET data for two target ensembles. First, MD ensembles
obtained for FF14SB depict the target ensemble, i.e.,
Y(FF14SB) (Figure 6A). Second, Y is a mixture of 488
structures randomly selected from a combined ensemble from
MD simulations of all studied FFs, i.e., Y(all); the contribution
in terms of the number of structures of each FF in target Y
corresponds to the sizes of prior ensembles (FF14SB = 21.5%,

Figure 4. MEM reweighting of cluster weights increases the
agreement with experiments while simultaneously reducing the
number of relevant conformations. (A) RDA distribution normalized
by bin widths (h) for FRET pair 215−296 obtained from 10 × 1 μs of
MD simulations using I(FF14SB) (dashed blue line) and post-MEM
reweighting Q (solid blue line) in comparison to the experimental
distribution of RDA (orange line) and its error (orange-shaded area,

Figure 4. continued

using a confidence threshold of 0.68) obtained from ucFRET. (B)
The total reduced discrepancy χr,total2 between experimental, xe(RDA),
and model distance distributions, xm(RDA), versus entropy S. (C)
Cumulative distribution of prior (solid lines) and posterior (dotted
lines) cluster weights for five different FFs (indicated by color).
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Figure 5. Comparison of posterior ensembles of FF14SB to FF19SB and IDPSFF after reweighting at an entropy threshold of S = −3. (A, C) Cα-
RMSD matrix for the top 50 cluster representatives reveals structural dissimilarity between cluster representatives despite a reasonable agreement
with experimental data in both cases (χr,total2 (FF14SB) = 1.16, χr,total2 (FF19SB) = 1.66, and χr,total2 (IDPSFF) = 1.20). Bar graphs depict the
corresponding posterior cluster weight for the 50 most populated clusters. (B, D) Comparison of representatives of the two most populated clusters
obtained from MEM. The pairwise structural similarity is given as Cα-RMSD. RMSD values in all cases exceed typical values for thermal
fluctuations by 1 Å.99 (E, F) Comparison of posterior weights of the pairwise most similar structures from the top 50 cluster representatives reveals
no correlation in the posterior weights.
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FF19SB = 17.2%, FF99SB = 6.6%, IDPSFF = 16.4%,
FF99SBdisp = 38.3%) used in the target ensemble. Uniform
weights are assigned to all members of Y(all). We then selected
the 50 most informative FRET pairs37 (Figure 6B). For each
FRET pair, we simulated fluorescence intensity decays for
donor dyes in the presence of FRET and applied the ucFRET
method to recover FRET distances (Figure 6C), which were,
in turn, used to optimize the prior ensembles using MEM.
3.7. MEM Cluster Reweighting with Synthetic FRET

Data. Predictably, we find that the agreement between
synthetic FRET data and the posterior MEM ensembles
quantified by χr,total2 improved with decreasing S (Figure 6D for
Y(FF14SB), Figure S22 for Y(all), and Table S8). We quantify
differences between conformational ensembles using the
Jensen−Shannon divergence (DJS(Y, Q))

87 of the inter-residue
distograms computed for the posterior ensembles, Q (Figure
6G). When refining I(FF14SB) for Y(FF14SB), χr,total2 is
initially the lowest, as expected, and reaches χr,total2 = 1 with the
least perturbation compared to any other I (Figure 6D). Initial
discrepancies between the synthetic data and the posterior
ensemble for small perturbations are likely due to numerical
inaccuracies, experimental noise, and systematic errors due to
different forward models for structures (i.e., AV calculations)
and the model used to recover experimental xe(RDA)
(systematic errors associated with the forward model
describing the fluorescence decays).19 For Y(FF14SB) and
I(FF14SB), DJS continuously increases. With decreasing S,
deviations between I and Q(FF, θ) are less penalized, and the
synthetic FRET data is better described, which may be due to
overfitting (Figures 6D and S22). In line with others,41 for
large θ, the initial ensemble remains unperturbed, and for small

θ, a few structures dominate the reweighted ensemble (Figure
S23). For the other I except FF99SBdisp and FF19SB, DJS(Y,
Q(FF, θ)) has a minimum in the proximity of the θ parameter
obtained from the L-shaped curve analysis of the χr,total2 −S plot
as described by Köfinger et al.41 The proximity of the DJS
minimum justifies the previously used rule-of-thumb of using
the “corner” of the χr,total2 −S curve39,41,59 as a sensible choice for
θ, termed θc; the corner is the point of maximal positive
curvature.100 In line with previous studies,20,101 we find that
when a large magnitude of S is needed to describe the
experimental data, this indicates that the prior is not suited to
represent the experiment. Additionally, we suggest that to
compare and rank priors, one has to consider not only the
initial χr,total2 but the entire evolution of the L-shaped curve,
including the position of the “corner” and the reduction of the
χr,total2 value at θc. As to FF99SBdisp and FF19SB, the L-shaped
curves reveal that both priors initially fit poorly to Y(FF14SB)
and require similarly strong perturbations to reach the
“corner”. Still, the FF99SBdisp ensemble shows a larger
reduction of χr2 compared to FF19SB (Figure 6D).
For I(FF14SB), which matches Y(FF14SB), we found that

computing the posterior using θ = θc is close to the optimal
reweighting as judged by the JS divergence and leads to a
weaker perturbation of cumulative weights, compared to the
stronger perturbation at θS=−3 (Figure 7A). In Cα-RMSD
matrices that compare pairwise Y to Q(FF14SB, θ), for θc
under these ideal conditions, we find clusters with smaller Cα
RMSD than for θS=−3 (Figure 7B,C). The change of individual
weights is considerable, however, ranging over 3 orders of
magnitude and more even at optimally chosen θ = θc (Figure
S23). The Cα-RMSD matrices show that cluster populations

Figure 6. MEM reconstruction based on synthetic FRET data. For a given target ensemble, here Y(FF14SB) (A) and a network of the 50 most
informative FRET pairs (B), we simulate fluorescence decay curves and convert them by sampling probability distributions over the population of
distances (synthetic distance distribution, xe(RDA)) (C). The total reduced discrepancy, χr,total2 , between the model distance distributions, xm(RDA),
of the posterior conformational ensemble recovered by MEM and xe(RDA) for all FRET network members versus the entropy, S (D). The circles
mark θc points that balance the synthetic data D and the prior I based on the L-curve criterion. For a given posterior ensemble with structures and
weights (E), we compute residue pairwise Cα-distance matrices (F) and corresponding population-weighted distograms (G). Each point in a
distogram corresponds to a distance occupancy computed for Cα atoms of structures of an ensemble. To compare two ensembles, we compute the
Jensen−Shannon divergence (DJS) between the posterior distogram and the distogram computed for Y, here Y(FF14SB) (H).
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are uncorrelated to structural similarities and, therefore,
indicate that individual atomistic structures of the MEM
posterior have no relevance. This is expected as MEM does not
optimize weights in a unique way given ensemble-average data
as an experimental input.8,9 In the case of FF99SBdisp, which
is the second-best FF based on DJS (Figure 6H) and provides a
real-life case (I ≠ Y), the weights are perturbed more
substantially (Figures 7D and S23), and structures of
Q(FF99SBdisp, θc) deviate by ∼20 Å on average from Y
(Figure 7E,F), despite using a network of 50 optimally chosen
FRET pairs for the generation of D. Note that for proteins with
chain lengths between 100 and 200 residues (Lif considered
here has 270 residues), average Cα-RMSD values against
∼2500 alternative folds taken from the PDB range from ∼15 to
20 Å.102 The average deviation between Y(FF14SB) and
Q(FF99SBdisp, θc) found here is thus comparable to the
structural dissimilarity of two randomly chosen proteins.
3.8. Robustness of Ensemble Features Resolved by

MEM. In line with others,8,9,103 we found that FRET-based
MEM is not robust at providing unique solutions when
individual (atomistic) structures and corresponding weights
are considered. Thus, we test if there are well-resolvable
ensemble features beyond the radius of gyration, a low-
information ensemble feature widely used to characterize
flexible molecules.20 We compute inter-residue distograms
(Figure 6F−G) as a representation for the ensemble diversity.
This representation integrates over ensemble members but
retains the residue (sequence) information. We compute the
pairwise mean, R̅, and the standard deviation, σR, and the

squared relative differences of R̅ and σR (δ2(R̅) and δ2(σR)
between two distograms) (Figure 8A−C). Comparing the
target ensemble Y(FF14SB) with the posterior ensemble
Q(FF14SB, θc), we find an excellent agreement between R̅
(upper triangle) and σR (lower triangle) of the Y and Q
distograms (Figure 8A). As expected, based on the PCA
(Figure 3), the initial deviations between Y(FF14SB) and
I(FF99SBdisp) are larger (Figure 8B) compared to I(FFSB14).
Nevertheless, we find that MEM improves δ2(R̅) 4-fold,
corresponding to the improvement of the average absolute
difference of R̅, Δ(R̅), from 5.3 to 2.4 Å, while σR on average
remains unchanged. For the case of Y(all) and Q(FF14SB, θc),
δ2(R̅) improves 10-fold (Δ(R̅) from 5.0 to 1.0 Å), while δ2(σR)
improves slightly, from 0.048 to 0.034 (Figure 8C). We find
that mean distances, R̅, are optimized overall better than σR.
Moreover, the largest differences in R̅ occur within EHD (dark
blue frame) and between any pair of subunits, highlighting
differences in the local model accuracy.
The average δ2(R̅) within EHD improves 4-fold for

Y(FF14SB) and Q(FF19SBdisp, θc) and 12-fold for Y(all)
and Q(FF14SB, θc), corresponding to improvements of Δ(R̅)
from 4.8 to 2.4 Å and 4.0 to 0.9 Å.
As an alternative, we characterized the structural diversity of

ensembles by computing density maps of the target ensemble
Y, the prior I, and the posterior Q ensembles (Figure 8D−F).
Prior to the computation of density maps, target, Y, prior, I,
and posterior ensemble, Q, were aligned to all atoms of the first
conformer in the corresponding ensemble, which is the most
populated cluster in the prior in the case of I and Q. In this

Figure 7. Cumulative weight distribution of prior I and posterior ensembles Q and pairwise Cα-RMSD matrices of the target ensemble,
Y(FF14SB), and the posterior ensemble, Q, computed for θc and θS=−3. (A) Cumulative weight for prior I(FF14SB) and posteriors Q(FF14SB, θc)
and Q(FF14SB, θS=−3). (B) Pairwise Cα-RMSD matrices of Y(FF14SB) and Q(FF14SB, θc) and (C) Y(FF14SB) and Q(FF14SB, θS=−3). (D)
Cumulative weights for I(FF99SBdisp) and Q(FF99SBdisp, θc) and Q(FF99SBdisp, θS=−3). (E) Pairwise Cα-RMSD matrices for Y(FF14SB) and
Q(FF99SBdisp, θc) and (F) for Y(FF14SB) and Q(FF99SBdisp, θS=−3). In all panels, clusters are sorted by descending weights.
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model representation, we reduce the data further by averaging
ensembles over clusters and residues. Representing the
ensembles as density maps allows us to use the cross-
correlation coefficient (CCC) of two maps as a similarity
metric for two ensembles. Overall, the CCCs to the target
ensemble are larger for the posterior than for the prior (Figure
8D−F; CCCs displayed to the lef t of the densities), indicating
that MEM refines ensemble-integrated features. CCCs
between prior and posterior are of the same magnitude,

indicating the retained structural similarity between the two
despite MEM refinement. We estimated the ensemble
precision of the density maps by computing Fourier shell
correlation (FSC) curves of two independent half-maps
(Figure 8G−I). Using an FSC threshold of 0.143, the average
posterior ensemble precision is in the range of 5−10 Å. We use
FSCs and CCCs to characterize ensembles and not individual
structures. An ensemble with an FSC precision of 5 Å can be
composed of structures that have individually a lower

Figure 8. Deviation of prior I and posterior ensemble Q from the target ensemble, Y, for three synthetic experiments (A−C), posterior ensemble
density maps (D−F), and ensemble precision estimates (G−I). First row: case Y = I, a single FF is the target Y(FF14SB) and the identical FF was
chosen as prior I. Second row: case Y ≠ I, a single FF is the target Y(FF14SB) and another FF was chosen as prior I(F99SBdisp) Third row: case Y
≠ I, a mixed ensemble from subensembles of all five FFs Y(all) and only the ensemble of one FF was chosen as prior I(FF14SB). Y(all) consists of
FF14SB (fraction of 21.5% of Y), FF19SB (17.2%), FF99SB (6.6%), IDPSFF(16.4%), and FF99SBdisp (38.3%), where the fractions in terms of the
number of structures of each FF in Y correspond to the sizes of prior ensembles. (A−C) Residue-wise squared relative deviation of prior (left) and
posterior (right) of the distogram mean distance δ2(R̅) (upper-right triangles) and standard deviation δ2(σR) (lower-left triangles) to Y. Cyan, dark
blue, and light blue squares and bars mark the residue range of the MD1, EHD, and MD2, respectively. Blue dots indicate FRET pairs. (D−F)
Density maps of the target ensemble (orange), Y, the prior (FF14SB, blue; FF99SBdisp, dark pink), I, and the posterior (FF14SB, light blue;
FF99SBdisp, light pink), Q, outline the extent of the experimental ensembles at 50%, 68%, and 90% of the density-weighted volume. The cross-
correlation coefficients (CCCs) displayed to the left of the densities quantify similarities of prior and posterior entire density maps to the target
ensemble, Y, the ones on the right similarities of prior and posterior density maps. (G−I) Fourier shell correlations (FSCs) of the two half-density
maps provide precision estimates for target Y (orange) and posterior Q (FF14SB, blue; FF99SBdisp, pink) density maps. The horizontal dashed
line at FSC = 0.143 marks a precision and resolution estimate for the gold standard used in electron microscopy.
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precision. Thus, FSC ensemble precision estimates should not
be compared to FSC resolution estimates of individual
structures, e.g., used in cryo-electron microscopy. Moreover,
note that sampling reflects the coverage of the clustered
conformational ensemble. This is reflected by Y’s sampling
precision of ≈4 Å (orange curves in Figure 8G,H.) As a logical
consequence, reweighting ensembles by MEM affects
precision, i.e., the difference in the precision between the
two FSC curves can be attributed to MEM. In the case of the
mixed ensemble Y(all), MEM even improved the precision.
To summarize, based on the benchmark using synthetic

data, we have refined our approach to optimally balance
different sources of information using the L-shaped curve
criterion. Furthermore, we show that to rank the priors and
judge their agreement with experimental data, one should not
solely rely on χr

2 but instead analyze the entire evolution of the

L-shaped curve. We demonstrate that prioritizing one source of
information over the other, i.e., relying solely on χr

2, leads to
overfitting and increased disagreement between optimized
ensembles and the ground truth (Figure 6H). In line with
others, we show that, even with a network of 50 FRET pairs
and in an ideal case scenario when Y = I, achieving atomistic
resolution of the posterior ensembles is neither realistic nor
feasible (Figure 7B). However, we found that representations
of the ensemble diversity on a reduced level of detail
(distograms and density maps) can be robustly recovered
depending on the agreement between the prior and
experimental data and only when optimally balancing the
two sources of information by using the corner point of the L-
shaped curve. An overview of which ensemble representation
can be robustly recovered by MEM depending on the
agreement of prior and experiments is provided in Table 1.

Table 1. Summary of Ensemble Representations That Can Be Robustly Recovered by MEM at θ = θc, Depending on the
Agreement between Prior and Experimental Data

distogram
representa-
tiona

completeness of prior atomistic modelsb mean std 3D density mapc

prior is complete θc is large, i.e., small perturbation of prior weights is needed to describe the data. − + + +
prior is incomplete θc is small, i.e., large perturbation of prior weights is necessary, and few structures
dominate the ensemble

− + − +

aAveraging over ensemble members. bNo averaging. cStructural diversity: averaging over ensemble members and residues.

Figure 9. Experimental inter-residue distograms and posterior density maps of Lif. (A) Cumulative distributions of prior and posterior weights for
FF14SB (top) and IDPSFF (bottom) ensembles reveal that smaller perturbations of prior weights occur at θc compared to θS=−3. (B) Residue-wise
squared relative deviation of distogram mean distance R̅ and standard deviation σR between FF14SB and IDPSFF prior (left) and posterior (right)
ensembles. (C) Posterior density maps of Q(FF, θc) contoured at 50, 68, and 90% of the density-weighted volume aligned to all atoms of the
homology model are displayed as cartoons. Numbers below the density maps represent cross-correlation coefficient (CCC) values between the
posterior density map of a respective force field to all of the others. CCC(Q, Q) values are color-coded according to the force field coloring scheme.
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3.9. Reevaluation of the Experimental Data. Analyzing
synthetic data for known target ensembles led us to refine our
MEM approach. Therefore, we reevaluated our experimental
data using low-resolution model representations of Lif
obtained at the “corner” point of the L-shaped curves (Table
S9). As for the synthetic data, for large θ, the prior remains
unperturbed, and for small θ, a few structures tend to dominate
the reweighted ensemble, which also holds at θc (Figure S24).
This feature is prominent for FF14SB (Figure 9A, top) and
also for IDPSFF, which, at θc, has an almost unaltered weight
distribution compared to the prior, although the individual
weights are perturbed as for FF14SB (Figure 9A, bottom;
Figure S24). Since posterior ensembles could not be resolved
in atomistic detail (Figure 5), we compare the experimentally
determined posterior ensembles at an ensemble-integrated
level using distograms.
Interestingly, among the FF14SB and IDPSFF ensembles

that fit the experimental data best, the prior ensembles agree
better in the distogram comparison than the posterior
ensembles at θc (Figure 9B). This is in line with PCA analyses,
which reveal that the conformational space of the two prior
ensembles is different (Figure 3) but that this difference is
exacerbated for the posteriors (Figures S25−S26). Note that
the number of experimental restraints (effective 6) is much
smaller than those from the synthetic data (50) and that
internal conformations of EHD are not probed. In accordance,
FF14SB and IDPSFF posterior distograms disagree the most
for residues 150−180 of the EHD (Figure 9B). In IDPSFF,
this region is unstructured in the first 20 residues, whereas it is
mainly helical in FF19SB (Figure S7).
Furthermore, the similarity between density maps of

FF14SB and IDPSFF ensembles is likewise not improved at
θc compared to the priors (CCCI(FF14SB,IDPSFF) = 0.88,
CCCQ(FF14SB,IDPSFF,θ dc) = 0.88). Averaged over all FFs, we
observe a slight improvement in CCCs (⟨CCC⟩I(FFs) = 0.88,
⟨CCC⟩Q(FFs,θ dc) = 0.91).
Based on CCCs ≥ 0.94 for all pairwise combinations of FFs

(Figure 9C (bottom line); Table S10), we classified Lif density
maps into three categories (Figure 9C). The first category
comprises FF14SB, FF19SB, and FF99SBdisp and resembles a
headphone shape; the second and third categories are,
respectively, formed by FF99SB and IDPSFF, which differ
equally from other FFs as from each other. The FF99SB
density map represents more compact Lif, whereas the IDPSFF
density map is more extended.
Overall, with our experimental data, MEM does not improve

the agreement between ensemble features of different priors
even at the medium-resolution level of distograms. At the low-
resolution level of density maps, we obtained consistent
posterior solutions for three of the five FFs. Still, the solutions
with the lowest χr,total2 (FF14SB and IDPSFF) are distinct, and,
at present, we cannot judge which one of the posterior
ensembles, or a mixture of both, describes Lif in solution. To
evaluate if further experimental data, such as SAXS measure-
ments, could alleviate this ambiguity, we computed SAXS
profiles (for details, see Supplemental Materials and Methods)
of the posterior ensembles at θ = θc (Figure S27). Observed
differences in the predicted SAXS profiles, particularly
noticeable in the Kratky plot, suggest that posterior ensembles
possibly score differently against experimental SAXS data.

4. DISCUSSION
In our study, we found that in the absence of error estimation
procedures, varying priors is a prerequisite for assessing the
robustness of MEM results. The optimal balance between prior
information and experimental data is achieved using the L-
curve criterion. In view of the many degrees of freedom of the
molecular system, the convergence of MEM results can only be
achieved when using a distogram or 3D density map
representation, depending on the consistency of priors and
experimental data.
MEMs optimize posterior conformer populations by

balancing information from different sources. Thus, the success
of MEM ensemble refinement depends on the (i) sampling
convergence and completeness of the prior, (ii) completeness
of the experimental information (data sparsity), and (iii)
availability of posterior uncertainty estimates. First, issues of
sampling convergence and completeness of the prior
ensembles can be addressed by more sampling. For apoLif,
we did not cover the conformational space sufficiently in 10
unbiased MD simulations with times of 1 μs each per FF, as
indicated by the structural differences of the prior ensembles
revealed by PCA and exchange time scales reaching hundreds
of microseconds determined experimentally. More sophisti-
cated sampling schemes, such as replica exchange simula-
tions,104,105 modeling transition networks,106,107 adaptive
sampling of Markov state models,108 or machine learning-
based approaches,109 are needed. Second, the six initially
chosen informative labeling site variants were insufficient to
cover local conformational heterogeneity as the conformational
space of the EHD was severely underestimated. To overcome
data sparsity, an extension of the FRET network is necessary.
However, this is related to a considerable experimental effort
requiring iterative structural and biochemical analysis cycles to
identify new labeling sites suitable for FRET experiments.37

Third, another fundamental restriction is that MEMs in their
current implementation lack uncertainty estimates of the
posterior. MEMs yield MAP estimates given an entropy prior
and the data likelihood, but these are point estimates without
information on the variance. Even if MEM reconstructions
ascertain that regular solutions are found for underdetermined
systems, it is currently not possible to judge the robustness of
the solution. Therefore, future ensemble refinement methods
will need to consider varying priors, e.g., using methods such as
k-fold cross-validation, Bayesian model validation, or subsam-
pling of posterior models for estimating posterior uncertain-
ties.110 Overall, the presented study depicts likely challenges
one might face when investigating a flexible system in an
integrated approach using MEM and highlights potential
pitfalls.
Previously, MEM refinement was applied to IDPs,19,20

ordered systems,13,59 and artificial model systems such as Ala5
pentapeptide.41 IDPs preclude a structural analysis in atomistic
detail, as they are very flexible and do not adopt defined
structures. Ordered systems likely can be well studied by the
classical FFs, and the effective degrees of freedom of the
systems that need to be covered experimentally are small.
Model systems can be exhaustively sampled. Hence, in these
cases, the challenges mentioned above in MEM refinement
were potentially less of an issue.
Considering Lif with its ordered structural parts combined

with highly flexible regions, we aimed at generating conforma-
tional ensembles for the apo state by combining structural
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ensembles from MD simulations with FRET data using MEM.
As it is not clear to what extent Lif is folded, we chose classical
FFs (FF99SB, FF14SB, and FF19SB), an FF tailored to IDPs
(IDPSFF), and an FF designed for ordered and disordered
proteins (FF99SBdisp). This allowed assessing the recovered
posterior ensemble dependency on priors and identifying
inconsistencies in posteriors.
In a benchmark based on synthetic FRET data, we find that

the optimal conformational ensembles are found when prior
and experimental information are balanced using the L-curve
criterion. Still, we were unable to obtain atomistic-level
information because the ensemble and the associated
conformational space are too large. MEM performed best at
recovering ensemble-integrated properties (both mean and std
of distograms) when the prior is complete, and only small
perturbations of the ensemble are required. For cases where
the prior is incomplete, e.g., due to an inaccurate FF or
insufficient sampling, the recovery of these properties is less
reliable, i.e., only the mean of distograms but not std and
ensemble shapes are recovered. In our case study, we find that
at an entropy lower than our estimated corner of the L-shaped
curve (S = −3), also medium-resolution features (means of
distograms) diverged more from the target ensemble despite
lower χr2, indicating overfitting. Hence, we recommend not
relying solely on the agreement with experimental data (χr2)
but instead to balance sources of information with the L-corner
criterion. Thus, scoring by MEM is convenient and robust for
validating the overall consistency of the FF-dependent prior
and posterior ensembles to experiments because the minimum
of the quality parameter, χr2, is well-known and defined and
overfitting can be controlled by the L-corner criterium.
Similarly, when using experimental data, the posterior

ensembles differ structurally, also for FFs that produce
posterior ensembles that best describe the data (FF14SB and
IDPSFF) or FFs that produce similar prior ensembles
(FF14SB and FF19SB). Likewise, no correlation between the
posterior cluster weights was found for similar structures
selected from different prior ensembles, independent of the
magnitude of the structural similarity. No consistency between
posteriors was found for ensemble-integrated features such as
distograms either. Only when considering posterior density
maps as low-resolution information, MEM yields three distinct
outcomes for the five priors. Three posteriors suggest that
despite the tendency of Lif to adopt compact and extended
conformations, “headphone”-like extended conformations
dominate the conformational landscape, reflecting that Lif
consists of ordered structural parts combined with highly
flexible regions.
In line with others,9,61,111 we conclude that using cluster-

resolved, atomistic-level representations for MEM with
ensemble-averaged experimental observables is an ill-defined
problem. Accordingly, for this, we obtained multiple different
ensembles that depend on their prior. Going to medium- and
low-resolution model representations (means of distograms
and density maps), we obtain partially consistent results based
on different priors, making the problem well defined.
Furthermore, our results caution against the interpretation of
MEM reconstructions for such heterogeneous systems as
studied here when single-point estimates of conformational
ensembles are interpreted without additional uncertainty
estimates. Using structurally varying priors, e.g., generated
with different FFs, is an ad hoc approach to estimating the
robustness of MEM reconstructions.
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